[Bjonnh.net]# _

authors Mary P. Choules ORCID , Jonathan Bisson ORCID , Wei Gao , David C. Lankin ORCID , James B. McAlpine ORCID , Matthias Niemitz ORCID , Birgit U. Jaki ORCID , Scott G. Franzblau ORCID , Guido F. Pauli ORCID
journal Journal of Organic Chemistry (RoMEO status: White)
subjects NMR Quality control Peptide Sequencing

Ensuring identity, purity, and reproducibility are equally essential during synthetic chemistry, drug discovery, and for pharmaceutical product safety. Many peptidic APIs are large molecules that require considerable effort for integrity assurance. This study builds on quantum mechanical 1H iterative Full Spin Analysis (HiFSA) to establish NMR peptide sequencing methodology that overcomes the intrinsic limitations of principal compendial methods in identifying small structural changes or minor impurities that affect effectiveness and safety. HiFSA sequencing yields definitive identity and purity information concurrently, allowing for API quality assurance and control (QA/QC). Achieving full peptide analysis via NMR building blocks, the process lends itself to both research and commercial applications as 1D 1H NMR (HNMR) is the most sensitive and basic NMR experiment. The generated HiFSA profiles are independent of instrument or software tools and work at any magnetic field strength. Pairing with absolute or 100% qHNMR enables quantification of mixtures and/or determination of peptide conformer populations. Demonstration of the methodology uses single amino acids (AAs) and peptides of increasing size, including the octapeptide, angiotensin II, and the nonapeptide, oxytocin. The feasibility of HiFSA coupled with automated NMR and qHNMR for use in QC/QA efforts is established through case-based examples and recommended procedures.

Read More...
categories publications science

authors Guido F. Pauli ORCID , Matthias Niemitz ORCID , Jonathan Bisson ORCID , Michael W. Lodewyk , Cristian Soldi , Jared T. Shaw , Dean J. Tantillo ORCID , Jordy M. Saya , Klaas Vos , Roel A. Kleinnijenhuis , Henk Hiemstra , Shao-Nong Chen ORCID , James McAlpine , David C. Lankin ORCID , J. Brent Friesen ORCID
journal Journal of Organic Chemistry (RoMEO status: White)
subjects Pharmacognosy Phytochemistry NMR FID raw data Spin simulation

The revision of the structure of the sesquiterpene aquatolide from a bicyclo[2.2.0]hexane to a bicyclo[2.1.1]hexane structure using compelling NMR data, X-ray crystallography, and the recent confirmation via full synthesis exemplify that the achievement of “structural correctness” depends on the completeness of the experimental evidence. Archived FIDs and newly acquired aquatolide spectra demonstrate that archiving and rigorous interpretation of 1D 1H NMR data may enhance the reproducibility of (bio)chemical research and curb the growing trend of structural misassignments. Despite being the most accessible NMR experiment, 1D 1H spectra encode a wealth of information about bonds and molecular geometry that may be fully mined by 1H iterative full spin analysis (HiFSA). Fully characterized 1D 1H spectra are unideterminant for a given structure. The corresponding FIDs may be readily submitted with publications and collected in databases. Proton NMR spectra are indispensable for structural characterization even in conjunction with 2D data. Quantum interaction and linkage tables (QuILTs) are introduced for a more intuitive visualization of 1D J-coupling relationships, NOESY correlations, and heteronuclear experiments. Overall, this study represents a significant contribution to best practices in NMR-based structural analysis and dereplication.

Read More...
categories publications science

authors Joo-Won Nam ORCID , Rasika Phansalkar , David C. Lankin ORCID , Jonathan Bisson ORCID , James McAlpine , Ariene A. Leme , Cristina M.P. Vidal , Benjamin Ramirez , Matthias Niemitz ORCID , Ana Bedran-Russo , Shao-Nong Chen ORCID , Guido F. Pauli ORCID
journal Journal of Organic Chemistry (RoMEO status: White)
subjects Pharmacognosy Phytochemistry Dentistry OPAC NMR

The ability of certain oligomeric proanthocyanidins (OPACs) to enhance the biomechanical properties of dentin involves collagen cross-linking of the 1.3–4.5 nm wide space via protein–polyphenol interactions. A systematic interdisciplinary search for the bioactive principles of pine bark has yielded the trimeric PAC, ent-epicatechin-(4β→8)-epicatechin-(2β→O→7,4β→8)-catechin (3), representing the hitherto most potent single chemical entity capable of enhancing dentin stiffness. Building the case from two congeneric PAC dimers, a detailed structural analysis decoded the stereochemistry, spatial arrangement, and chemical properties of three dentin biomodifiers. Quantum-mechanics-driven 1H iterative full spin analysis (QM-HiFSA) of NMR spectra distinguished previously unrecognized details such as higher order J coupling and provided valuable information about 3D structure. Detection and quantification of H/D-exchange effects by QM-HiFSA identified C-8 and C-6 as (re)active sites, explain preferences in biosynthetic linkage, and suggest their involvement in dentin cross-linking activity. Mapping of these molecular properties underscored the significance of high δ precision in both 1H and 13C NMR spectroscopy. Occurring at low- to subppb levels, these newly characterized chemical shift differences in ppb are small but diagnostic measures of dynamic processes inherent to the OPAC pharmacophores and can help augment our understanding of nanometer-scale intermolecular interactions in biomodified dentin macromolecules.

Read More...
categories publications science